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This paper addresses the convergence properties of implicit numerical solution algorithms
for nonlinear hyperbolic transport problems. It is shown that the Newton–Raphson (NR)
method converges for any time step size, if the flux function is convex, concave, or linear,
which is, in general, the case for CFD problems. In some problems, e.g., multiphase flow in
porous media, the nonlinear flux function is S-shaped (not uniformly convex or concave);
as a result, a standard NR iteration can diverge for large time steps, even if an implicit dis-
cretization scheme is used to solve the nonlinear system of equations. In practice, when
such convergence difficulties are encountered, the current time step is cut, previous itera-
tions are discarded, a smaller time step size is tried, and the NR process is repeated. The
criteria for time step cutting and selection are usually based on heuristics that limit the
allowable change in the solution over a time step and/or NR iteration. Here, we propose
a simple modification to the NR iteration scheme for conservation laws with S-shaped flux
functions that converges for any time step size. The new scheme allows one to choose the
time step size based on accuracy consideration only without worrying about the conver-
gence behavior of the nonlinear solver. The proposed method can be implemented in an
existing simulator, e.g., for CO2 sequestration or reservoir flow modeling, quite easily.
The numerical analysis is confirmed with simulation studies using various test cases of
nonlinear multiphase transport in porous media. The analysis and numerical experiments
demonstrate that the modified scheme allows for the use of arbitrarily large time steps for
this class of problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction
A wide range of CFD problems, including multiphase flow dynamics in porous media, are described by nonlinear hyper-
bolic conservation laws. Various methods are used to solve these conservation equations numerically [7]. Explicit time inte-
gration schemes offer accuracy and computational efficiency as long as the limit on the stable time step size is not a major
concern [5]. In some problems, however, the time step restriction associated with an explicit scheme is quite severe, and the
use of implicit schemes is necessary. In reservoir simulation problems [1], where the evolution of the saturation field in the
geologic porous formation, as a function of space in time is sought, it is often the case that for a given global time step size,
the CFL numbers in the computational domain can vary by orders of magnitude [6]. In such cases, the use of explicit time
integration schemes is simply not feasible, and implicit time integration is required [1,3].
. All rights reserved.
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One approach for dealing with problems where the CFL numbers vary widely across the computational domain is the use
of adaptive implicit/explicit schemes. In these adaptive strategies, an unknown in the computational domain is treated either
explicitly, or implicitly, for a given time increment [10,4]; heuristics [10], or linear stability analysis [2] can be used to label a
particular unknown as explicit or implicit. However, even if an adaptive (mixed-implicit) approach is used, there is no guar-
antee that the nonlinear solver, which is usually based on the Newton method, will converge for the unknowns that are trea-
ted implicitly.

In the Newton method, a sequence of iterates, each involving the construction (Jacobian matrix computation) and solu-
tion of the resulting linear system, is performed until the solution of the nonlinear algebraic equations is obtained for the
target time step [8]. The solution from the previous time step is usually used as the starting point for the Newton iterations.
Once a converged solution is obtained, one proceeds with the next time step. This approach is straightforward, and for con-
servation laws where the flux function is convex (shock), concave (rarefaction wave), or linear (contact discontinuity), the
Newton scheme is unconditionally stable. However, for S-shaped flux functions, like for most problems involving nonlinear
multiphase flow and transport in porous media, the Newton method does not converge for time steps that are too large [1].
In reservoir simulation, this problem is usually overcome by empirical time step control techniques. The use of such heuris-
tics often leads to time step sizes that are too conservative resulting in unacceptably large computational time and wasted
computations.

Here, we present convergence maps and a theoretical convergence analysis of implicit solution algorithms for transport
problems governed by first-order hyperbolic conservation laws with S-shaped flux functions, and we propose a simple mod-
ification of the Newton method that results in an unconditionally convergent iterative scheme. We point out that truncation
errors, due to the use of large time steps, are not the focus of this paper. Instead, our objective is to deal with problems where
the convergence behavior of the nonlinear solver is the controlling factor in selecting the time steps in the course of a sim-
ulation. Since issues related to the convergence of the nonlinear solver are resolved by using the scheme proposed here, the
time step size for modeling this class of large-scale nonlinear problems can be chosen solely based on accuracy (time trun-
cation error) considerations.

In Section 2, the model problem and a standard solution algorithm are introduced. In Section 3, the convergence behavior
of implicit solution algorithms for hyperbolic problems is investigated. In Section 4, we present a simple modification that
leads to unconditional convergence, and we demonstrate the modified scheme using challenging two-phase flow problems.
The conclusions are given in Section 5.

2. Model problem and standard solution algorithm

We consider the hyperbolic equation
Fig. 1
@S
@t
þ $ � f ðSÞuð Þ ¼ 0 on X: ð1Þ
Eq. (1) describes the convection of the dependent variable S (0 6 S 6 1), where f is the nonlinear flux function of S with
0 6 f 6 1, and u is a given velocity field, which can have significant spatial variability in the domain at a given time. For sim-
plicity, but without loss of generality, u is considered constant in time, and we assume that f 0 ¼ df=dS P 0. The nonlinear
transport problem can be solved iteratively using the Newton–Raphson method as outlined in the flow diagram of Fig. 1
leading to the solution Snþ1 at the new time level. In each iteration step mþ 1, the linearized transport equation is solved
(represented by the operator T), which results in an updated saturation field Snþ1;mþ1. When the maximum absolute change
in the saturation between iterations anywhere in the domain is less than an appropriately defined threshold, e, the nonlinear
loop is considered converged and Snþ1;mþ1 is taken as the solution Snþ1 at the new time level.

Next, we study a 3D discretization of Eq. (1), which is based on implicit Euler time integration and first-order upwinding
[1,7]. For simplicity, an orthogonal, uniformly spaced grid of which each cell (control-volume) can be identified by an index
triplet I ¼ ði; j; kÞ is considered. This leads to the nonlinear scheme
. Flow diagram of one time step using the Newton–Raphson method; solving the linearized transport equation is represented by the operator T.
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Snþ1
I � Sn

I

s
þ
X3

m¼1

½f nþ1um�Iþm � ½f
nþ1um�I�m

hm

( )
¼ 0: ð2Þ
The superscripts n and nþ 1 denote the old and new time levels, respectively, s is the time step size, h1;h2 and h3 are the grid
spacings in the three coordinate directions. The index triplets I�m ¼ I � dIm=2 denote quantities at the faces of cell I, where
dI1 ¼ ð1;0;0Þ; dI2 ¼ ð0;1;0Þ and dI3 ¼ ð0;0;1Þ. Note that for simple upwinding
½fum�I�m ¼ F fI�dIm ; fI; ½um�I�m
� �

and ½fum�Iþm ¼ F fI; fIþdIm ; ½um�Iþm
� �

; ð3Þ
with
Fða; b; cÞ ¼
ac if c > 0;
bc else:

�
ð4Þ
In order to solve the nonlinear algebraic system (2), the flux f nþ1 ¼ f ðSnþ1Þ is approximated by the linearization
f nþ1 � f nþ1;mþ1 ¼ f nþ1;m þ df
dS

� �nþ1;m

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
f 0nþ1;m

Snþ1;mþ1 � Snþ1;m
� �

; ð5Þ
where the superscript nþ 1; mþ 1 denotes the iteration level mþ 1 during the time step nþ 1. Then, a new approximation
Snþ1;mþ1 of Snþ1 is computed by solving the linearized system
Snþ1;mþ1 � Sn

s
þ f nþ1;m þ f 0nþ1;mðSnþ1;mþ1 � Snþ1;mÞ

a

" #
I

¼ bnþ1;mþ1
I ; ð6Þ
with
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Linear (a), convex (b), concave (c) and S-shaped (d) functions f1ðSÞ; f 2ðSÞ; f 3ðSÞ and f4ðSÞ (with M ¼ 10), respectively, which are used for the
ence analysis in this paper.
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aI
¼
X3

m¼1

Hð½um�Iþm Þ½um�Iþm � Hð½�um�I�m Þ½um�I�m
hm

( )
; ð7Þ
and
3 nþ1;m 0nþ1;m nþ1;mþ1 nþ1;m( )
bnþ1;mþ1
I ¼

X
m¼1

Hð½um�I�m Þ½f þ f ðS � S Þ�I�dIm
½um�I�m

hm

�
X3

m¼1

Hð½�um�Iþm Þ½f
nþ1;m þ f 0nþ1;mðSnþ1;mþ1 � Snþ1;mÞ�IþdIm

½um�Iþm
hm

( )
; ð8Þ
which is obtained by substituting the right-hand side of Eq. (5) for f nþ1 in Eq. (2); Hð�Þ denotes the Heaviside function. We
note that it is important to enforce the constraint 0 6 Snþ1;mþ1

6 1, which is justified by the physics, after every iteration.
Rearranging the previous expressions leads to the simple form
f nþ1;m þ a
s

Snþ1;m|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
gðSnþ1;mÞ

þ f 0nþ1;m þ a
s

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

g0 ðSnþ1;mÞ

ðSnþ1;mþ1 � Snþ1;mÞ ¼ cnþ1;mþ1

2
6664

3
7775

I

; ð9Þ
Standard Newton–Raphson scheme: convergence maps for the linear function f ðSÞ ¼ f1ðSÞ;aI � 1, and s ¼ 0:1 (a), s ¼ 1 (b), s ¼ 10 (c) and s ¼ 100
colors in the Sn

I –cnþ1
I -plane refer to the convergence rate of the scheme (11); dark blue means fast (1 iteration) and dark red slow (10 iterations)

ence; white indicates no convergence. As expected, only one iteration is required for all s. (For interpretation of the references to colour in this
egend, the reader is referred to the web version of this article.)
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where
Fig. 4.
(d). The
converg
(For int
cnþ1;mþ1 ¼ a bnþ1;mþ1 þ Sn

s

� �
: ð10Þ
To study the nonlinear convergence behavior, we now assume that cnþ1
I ¼ cnþ1;mþ1

I is known and fixed for all iteration levels m.
Eq. (9) can be rearranged as
Snþ1;mþ1
I ¼max 0;min 1; Snþ1;m

I þ cnþ1
I � gðSnþ1;m

I Þ
g0ðSnþ1;m

I Þ

 ! !
; ð11Þ
for the new value Snþ1;mþ1
I with the function gðSÞ ¼ f ðSÞ þ Sa=s. The function g as well as cnþ1

I depend on the time step size,
which must be chosen such that
0 6 cnþ1
I 6 gð1Þ; ð12Þ
is satisfied. Note that since for proper boundary conditions, the assumption that cnþ1
I is already known always applies for at

least one grid cell I, where convergence has not been achieved yet. This can be demonstrated by using a potential-based (flow
direction) ordering of the equation and unknowns [6]. Thus, the isolated study of the iteration scheme (11) for a given con-
trol-volume allows us to make general conclusions about the convergence behavior of scheme (7).
Standard Newton–Raphson scheme: convergence maps for the convex function f ðSÞ ¼ f2ðSÞ;aI � 1, and s ¼ 0:1 (a), s ¼ 1 (b), s ¼ 10 (c) and s ¼ 100
colors in the Sn

I –cnþ1
I -plane refer to the convergence rate of the scheme (11); dark blue means fast (1 iteration) and dark red slow (10 iterations)

ence; white indicates no convergence. As expected, no white regions exist, which indicates that the scheme is unconditionally convergent for any s.
erpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3. Convergence analysis

Here, we investigate the stability and convergence rate of scheme (11) for different combinations of
f ðSÞ; Snþ1;0

I ¼ Sn
I ; c

nþ1
I ;aI and s.

For a more rigorous theoretical understanding, the following theorem is introduced:

Theorem 1. The iteration scheme
Fig. 5.
(d). The
converg
(For int
Smþ1 ¼ hðSmÞ ¼max 0;min 1; Sm þ gðS1Þ � gðSmÞ
g0ðSmÞ

� �� �
; ð13Þ
with 0 6 S1 6 S1 6 S2 6 1 is considered, where the function gðSÞ 2 C2 fulfills
ð8S 2 ½S1; S2� : g0ðSÞP 0ð Þ _ 8S 2 ½S1; S2� : g0ðSÞ 6 0Þð Þ ^ ð8S 2 ½S1; S2� : g00ðSÞP 0ð Þ _ ð8S 2 ½S1; S2� : g00ðSÞ 6 0Þð Þ: ð14Þ
In this case, it follows that
8Sm 2 fS : S1 6 S 6 S2 ^ jg0ðSÞj > jg0ðS1Þjg : jS1 � hðSmÞj 6 jS1 � Smj ^ ðS1 � hðSmÞÞðS1 � SmÞP 0: ð15Þ
Proof. 8Sm 2 fS : S1 6 S 6 S2 ^ jg0ðSÞj > jg0ðS1Þjg one can write
Standard Newton–Raphson scheme: convergence maps for the concave function f ðSÞ ¼ f3ðSÞ;aI � 1, and s ¼ 0:1 (a), s ¼ 1 (b), s ¼ 10 (c) and s ¼ 100
colors in the Sn

I –cnþ1
I -plane refer to the convergence rate of the scheme (11); dark blue means fast (1 iteration) and dark red slow (10 iterations)

ence; white indicates no convergence. As expected, no white regions exist, which indicates that the scheme is unconditionally convergent for any s.
erpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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gðS1Þ ¼ gðSmÞ þ gðS1 � SmÞ; ð16Þ
with 0 6 g=g0ðSmÞ 6 1. Comparison with
gðS1Þ ¼ gðSmÞ þ g0ðSmÞðS� � SmÞ; ð17Þ
leads to
S� � Sm ¼ gðS1Þ � gðSmÞ
g0ðSmÞ

¼ g
g0ðSmÞ

ðS1 � SmÞ; ð18Þ

) 0 6
S� � Sm

S1 � Sm ¼
g

g0ðSmÞ
6 1; ð19Þ

) 0 6
ðS1 � SmÞ � ðS1 � S�Þ

S1 � Sm 6 1; ð20Þ

) 0 6 1� S1 � S�

S1 � Sm 6 1; ð21Þ

) 0 6
S1 � S�

S1 � Sm 6 1: ð22Þ
Standard Newton–Raphson scheme: convergence maps for the S-shaped function f ðSÞ ¼ f4ðSÞwith M ¼ 1;aI � 1, and s ¼ 0:1 (a), s ¼ 1 (b), s ¼ 10 (c)
100 (d). The colors in the Sn

I –cnþ1
I -plane refer to the convergence rate of the scheme (11); dark blue means fast (1 iteration) and dark red slow (10

ns) convergence; white indicates no convergence. (For interpretation of the references to colour in this figure legend, the reader is referred to the
rsion of this article.)
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From Eq. (22) follows that
Fig. 7.
(c) and
iteratio
web ve
jS1 � S�j 6 jS1 � Smj and that ðS1 � S�ÞðS1 � SmÞP 0; ð23Þ
which leads to either
0 6 S1 6 S� 6 Sm
6 1 or 0 6 Sm

6 S� 6 S1 6 1; ð24Þ
and together with Eqs. (13) and (17) one can write
S� ¼ hðSmÞ: ð25Þ
Finally, from (24) and (25), we get
8Sm 2 fS : S1 6 S 6 S2 ^ jg0ðSÞj > jg0ðS1Þjg : jS1 � hðSmÞj 6 jS1 � Smj ^ ðS1 � hðSmÞÞðS1 � SmÞP 0: � ð26Þ
Theorem 1 states that Smþ1 ¼ hðSmÞ and Sm are on the same side of S1, and that Smþ1 is closer to S1 than Sm, if there exists a
range containing both Sm and S1, in which the monotonous function gðSÞ is convex, concave, or linear, and if
jg0ðSmÞjP jg0ðS1Þj. Note that with the substitutions Snþ1;m

I ¼ Sm and cnþ1
I ¼ gðS1Þ the iteration schemes (11) and (13) are

equivalent.
Standard Newton–Raphson scheme: convergence maps for the S-shaped function f ðSÞ ¼ f4ðSÞ with M ¼ 0:1;aI � 1, and s ¼ 0:1 (a), s ¼ 1 (b), s ¼ 10
s ¼ 100 (d). The colors in the Sn

I –cnþ1
I -plane refer to the convergence rate of the scheme (11); dark blue means fast (1 iteration) and dark red slow (10

ns) convergence; white indicates no convergence. (For interpretation of the references to colour in this figure legend, the reader is referred to the
rsion of this article.)
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Now we consider the following functions for f ðSÞ:
Fig. 8.
(c) and
iteratio
web ve
f1ðSÞ ¼ S; f2ðSÞ ¼ S2; f3ðSÞ ¼ 1� ð1� SÞ2 and f 4ðSÞ ¼
S2

S2 þMð1� SÞ2
; ð27Þ
which are linear, convex, concave, and S-shaped, respectively (see Fig. 2). For all functions, studies with s 2 f0:1;1;10;100g
and aI � 1 are performed. In addition, for f ðSÞ ¼ f4ðSÞ, all possible combinations with M 2 f0:1;1;10g are investigated. This
results in 24 cases, for which we study the behavior of the Newton–Raphson scheme. In each case, we determine for all
points ðSnþ1;0

I ; cnþ1
I Þ 2 ½0;1� 	 ½0; gð1Þ�, if the solution Snþ1

I ¼ g�1ðcnþ1Þ is found by scheme (11) as m!1, i.e., if
lim
m!1

gðSnþ1;m
I Þ ¼ cnþ1

I : ð28Þ
The colors in Figs. 3–5, 7 and 8 depict the number of iterations required until the convergence criterion
jSnþ1;mþ1

I � Snþ1;m
I j 6 � ¼ 10�4 is satisfied. Specifically, dark blue means fast (one iteration) and dark red means slow (10 iter-

ations) convergence; the white regions in the Sn
I -cnþ1

I -phase space indicate that no convergence is achieved after 20
iterations.

From the convergence maps shown in Figs. 3–5, one can observe that scheme (11) is unconditionally convergent for lin-
ear, convex, and concave functions f ðSÞ. That is, for any cnþ1

I 2 ½0; gð1Þ�, the solution Snþ1
I ¼ g�1ðcnþ1

I Þ is found from any initial
guess Snþ1;0

I ¼ Sn
I 2 ½0;1� independent of the time step size s 2 f0:1;1;10;100g.
Standard Newton–Raphson scheme: convergence maps for the S-shaped function f ðSÞ ¼ f4ðSÞ with M ¼ 10;aI � 1, and s ¼ 0:1 (a), s ¼ 1 (b), s ¼ 10
s ¼ 100 (d). The colors in the Sn

I –cnþ1
I -plane refer to the convergence rate of the scheme (11); dark blue means fast (1 iteration) and dark red slow (10

ns) convergence; white indicates no convergence. (For interpretation of the references to colour in this figure legend, the reader is referred to the
rsion of this article.)
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This is consistent with Theorem 1. We have 0 ¼ S1 6 Snþ1;0
I 6 S2 ¼ 1 with g0ðSÞ > 0 for all S 2 ½S1; S2� and either

8S 2 ½S1; S2� : g00ðSÞP 0 or 8S 2 ½S1; S2� : g00ðSÞ 6 0, i.e., the conditions for Theorem 1 are fulfilled. For Snþ1;0
I with

jg0ðSnþ1;0
I ÞjP jg0ðS1Þj, Theorem 1 guarantees that all Snþ1;m>0

I are on the same side of S1 ¼ g�1ðcnþ1
I Þ and that

limm!1Snþ1;m
I ¼ S1. On the other hand, if :ðjg0ðSnþ1;0

I ÞjP jg0ðS1ÞjÞ; Snþ1;0
I and Snþ1;1

I are on opposite sides of S1, but all Snþ1;m>0
I

are on the same side and approach S1 as m!1.
For S-shaped functions f ðSÞ, the situation is different. Figs. 6–8 show the convergence maps for f ðSÞ ¼ f4ðSÞ with

M ¼ 1;M ¼ 0:1 and M ¼ 10, respectively. For very small time steps (s ¼ 0:1), scheme (11) is convergent, i.e., the phase plane
contains no white regions. However, the fraction of white area in the considered domain increases rapidly for larger time
steps (s 2 f1;10;100g).

While the implicit convection scheme (7) is unconditionally stable for linear, convex, and concave flux functions, the
above analysis of the iteration Eq. (11) reveals that small time steps are required to achieve stability, if the flux function
has an S-shape (concave–convex).

While these findings are consistent with the numerical experiences in reservoir simulation practice, the non-convexity of
the flux function has not been clearly identified as a major cause of nonlinear convergence problems. Moreover, a detailed
convergence analysis of the nonlinear iteration scheme has not been performed. To our knowledge, the only exception is the
work of Peaceman [9], where he performed a nonlinear stability analysis of the hyperbolic conservation equations for two-
phase transport in porous media with the usual S-shaped flux function. He concluded that the stability limit of the implicit
scheme did not depend on the local throughput (CFL) condition, but on the amount of allowable change in the solution (sat-
uration) over a time step. Peaceman pointed out the difficulty of determining the ‘allowable change amount’ a priori. More-
over, he pointed to stability difficulties associated with large changes in the solution variable during a time step (usually an
indication of a large time step), when the second derivative of the flux function was not uniformly negative. However, his
results were not conclusive, and they did not lead to an improved nonlinear solution strategy of the discretized conservation
laws.

3.1. 2D test case

To demonstrate the convergence problem of the convection scheme (7) with S-shaped flux functions, a rectangular do-
main X ¼ ½0;120� 	 ½0;60� with a uniform 120	 60 grid is considered. First, a divergence-free velocity field u ¼ �k$p was
computed by solving the elliptic equation
Fig. 9.
colour
$ � k$pð Þ ¼ �q on X; ð29Þ
for p with the boundary condition
$p � n ¼ 0 at @X; ð30Þ
and source and sink terms q ¼ 1 and q ¼ �1 in the sub-domains Xin ¼ ½0;1� 	 ½0;1� and Xout ¼ ½119;120� 	 ½59;60�, respec-
tively (n is the unit normal vector at the boundary @X pointing outward). The spatially varying coefficient, k, is defined
for each grid cell; its base-10 logarithm is shown in Fig. 9. The resulting velocity, u, is then employed to approximately solve
Eq. (1) using scheme (7). In the following studies, we refer to the normalized time t� ¼ tq=7200. Initially, S � 0:1 in the whole
domain, and for t� > 0; S � 1 in Xin. Fig. 10 shows the distribution of S after one time step for f ðSÞ ¼ f4ðSÞ with M ¼ 1 and
s ¼ 0:005 (top), f ðSÞ ¼ f2ðSÞ with s ¼ 0:005 (middle), and f ðSÞ ¼ f2ðSÞ with s ¼ 0:5 (bottom).

Strong oscillations occur with f ðSÞ ¼ f4ðSÞ, although the time step size s ¼ 0:005 is relatively small. The same scheme is
stable with f ðSÞ ¼ f2ðSÞ for the same time step size; moreover, the same scheme is stable even for a time step that is 100
20 40 60 80 100

10

20

30

40

50

 

 

−2 −1 0 1 2 3

Domain of 2D test case: shown is the base-10 logarithm of k; blue means low and red means high values. (For interpretation of the references to
in this figure legend, the reader is referred to the web version of this article.)
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times larger (the number of iterations was limited to 200). Next, the origin of the instability (convergence problem) is inves-
tigated for the local scheme (11). Then, based on these findings, a simple modification resulting in an unconditionally con-
vergent nonlinear iteration scheme is devised.

4. Unconditionally convergent solution algorithm

The convergence maps in Figs. 3–5, 7 and 8 show that the iteration Eq. (11) converges for all possible target values cnþ1
I , if

Snþ1;0
I ¼ Sc , where Sc is the inflection point of the function f ðSÞ with f 00jSc ¼ d2f=dS2jSc ¼ 0 (note that curvature and inflection

point are the same for both f ðSÞ and gðSÞ).
This is predicted by Theorem 1. There exist two possibilities: one with S1 ¼ Sc

6 S1 ¼ g�1ðcnþ1
I Þ 6 S2 ¼ 1 and one with

S1 ¼ 0 6 S1 6 S2 ¼ Sc . In both cases, Sc 2 ½S1; S2� and 0 6 g0ðS1Þ 6 g0ðScÞ, and therefore Theorem 1 ensures for Snþ1;m
I ¼ Sc that

all Snþ1;lPm
I are on the same side of S1 and that 8l P m : jSnþ1;lþ1

I � S1j 6 jSnþ1;l
I � S1j; i.e. with the Newton–Raphson scheme,

one obtains liml!1Snþ1;l>m
I ¼ S1, if one starts the Newton–Raphson iterations with Snþ1;m

I ¼ Sc.

4.1. First modified scheme

This finding suggests setting Snþ1;mþ1
I ¼ Sc at the end of each Newton–Raphson iteration mþ 1, if the curvature f 00 has oppo-

site signs at Snþ1;m
I and Snþ1;mþ1

I . The resulting nonlinear solver is unconditionally convergent even for S-shaped flux functions.
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Fig. 10. Distribution of S after one time step: with f ðSÞ ¼ f4ðSÞ (M ¼ 1) after t� ¼ 0:005 and s ¼ 0:005 (top), with f ðSÞ ¼ f2ðSÞ after t� ¼ 0:005 and s ¼ 0:005
(middle), with f ðSÞ ¼ f2ðSÞ after t� ¼ 0:5 and s ¼ 0:5 (bottom).



Fig. 11. First modified scheme: convergence maps for the S-shaped function f ðSÞ ¼ f4ðSÞ with M ¼ 10;aI � 1, and s ¼ 0:1 (a), s ¼ 1 (b), s ¼ 10 (c) and
s ¼ 100 (d). The colors in the Sn

I –cnþ1
I -plane refer to the convergence rate of the scheme (11); dark blue means fast (1 iteration) and dark red slow (10

iterations) convergence; white indicates no convergence. No white regions exist indicating that the scheme is unconditionally convergent for any s. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Flow diagram of one time step using the second modified scheme; solving the linearized transport equation is represented by the operator T.
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This is referred to as the first modified scheme. Convergence (stability) for large and small time steps is confirmed by the
convergence maps of the first modified scheme with f ðSÞ ¼ f4ðSÞ;M ¼ 10;a � 1 and s 2 f0:1;1;10;100g shown in Fig. 11,
which contain no white regions.

4.2. Second modified scheme

The first modification of the iterative convection scheme (7) described above is straightforward. In some practical
cases, however, it may be difficult, or costly, to determine the exact location of the inflection point. Therefore, a second
modified scheme that is easier to implement in a general setting is proposed. This scheme differs from the first modified
scheme only in the way Snþ1;mþ1

I is modified at the end of each Newton–Raphson iteration. Instead of setting Snþ1;mþ1
I to Sc ,

selective under-relaxation is applied, i.e., Snþ1;mþ1
I is replaced by ðSnþ1;mþ1

I þ Snþ1;m
I Þ=2, if the signs of f 00 at Snþ1;m

I and Snþ1;mþ1
I

are not the same; otherwise, Snþ1;mþ1
I remains unchanged. A diagram of the second modified scheme is shown in Fig. 12.

Since it is straightforward to determine the curvatures of f, the alternative, second modification can easily be imple-
mented in an existing simulator. Fig. 13 depicts convergence maps for the second modified scheme with
f ðSÞ ¼ f4ðSÞ;M ¼ 10, a � 1 and s 2 f0:1;1;10;100g. Similar to the convergence maps of the first modified scheme, no
white regions exist, which confirms that the second modified scheme is convergent, even for extremely large time steps.
For comparison, convergence maps of the Newton–Raphson scheme with under-relaxation (unconditional with a relax-
Fig. 13. Second modified scheme: convergence maps for the S-shaped function f ðSÞ ¼ f4ðSÞ with M ¼ 10;aI � 1, and s ¼ 0:1 (a), s ¼ 1 (b), s ¼ 10 (c) and
s ¼ 100 (d). The colors in the Sn

I –cnþ1
I -plane refer to the convergence rate of scheme (11); dark blue means fast (1 iteration) and dark red slow (15 iterations)

convergence; white indicates no convergence. No white regions exist indicating that the scheme is unconditionally convergent for any s. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)



ation factor of 0.5) with f ðSÞ ¼ f4ðSÞ;M ¼ 10;a � 1 and s 2 f0:1;1;10;100g are shown in Fig. 14. The dominance of red in
the plots of Fig. 14 indicates that typically many iterations are required to reach convergence, which is in contrast to the
dominance of dark blue in the plots of Fig. 13 indicating that, on average, only few iterations are required with the sec-
ond modified scheme.
4.3. Numerical experiments

In this section, we demonstrate that both modified schemes work quite well when used with the convection scheme (7)
as predicted by the analysis of the iteration Eq. (11). It is also shown that the two modified schemes are almost equally effi-
cient. Moreover, for very small time steps, the efficiency is the same as that of the unmodified Newton–Raphson scheme. On
the other hand, efficiency is significantly compromised, if convergence is achieved by unconditional under-relaxation after
each iteration.

For the following studies, the test case described in Section 3.1 is employed with f ðSÞ ¼ f4ðSÞ;M ¼ 1 and different val-
ues for s
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modified schemes are convergent for all s. Note that while the saturation field appears more dispersed in the lower plots
of Fig. 15 due to large time truncation errors, the solution is consistent with the discrete representation of physics and is
free of oscillations. Therefore, the new nonlinear solution method allows for choosing the time step size solely based on
accuracy considerations (i.e., space and time truncation errors) without worrying about the stability (convergence behav-
ior) of the nonlinear solver.

In all cases, the number of required iterations is similar for the two modified schemes. This is illustrated in Fig. 16, where
convergence histories of one large time step (s ¼ 0:5) are shown for the two modified schemes and for Newton–Raphson
with consequent (unconditional) under-relaxation with a relaxation factor of 0.5. Note that Newton–Raphson with under-
relaxation is also stable, but requires significantly more iterations to converge.
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Fig. 15. Scalar S after t� ¼ 0:5 for f ðSÞ ¼ f4ðSÞ (M ¼ 1) using the second modified scheme: with s ¼ 0:005 (top), with s ¼ 0:05 (middle) and with s ¼ 0:5
(bottom).
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5. Conclusions

We analyzed the convergence problems associated with the Newton–Raphson scheme for solving the algebraic systems
associated with implicit discretization of nonlinear transport equations with S-shaped flux functions, which are of interest in
modeling multi-phase flow and transport in porous media, for example. The convergence problems of standard Newton
methods are tied to the properties of the flux function in the conservation law and dependence on the initial guess and
the size of the desired time step. Based on a detailed analysis, we proposed an unconditionally convergent iterative solution
algorithm that employs a simple modification of the classical Newton–Raphson iteration scheme and requires minimal effort
to be implemented in an existing simulator. Theoretical analysis indicates that the modified scheme is unconditionally con-
vergent for any time step size, and this was demonstrated using challenging numerical problems of two-phase flow, where
we spanned a very wide range of the parameter space of interest. The convergence rate and computational efficiency of the
proposed schemes are expected to improve both the robustness and overall efficiency of large-scale simulation problems
significantly. The new unconditionally convergent iteration schemes allow one to choose the time step size solely based
on accuracy considerations related to the physics being modeled (e.g., time truncation error) as opposed to being limited
by convergence difficulties associated with the nonlinear solver itself.
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